首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5114篇
  免费   469篇
  2023年   45篇
  2022年   38篇
  2021年   161篇
  2020年   124篇
  2019年   139篇
  2018年   170篇
  2017年   143篇
  2016年   249篇
  2015年   311篇
  2014年   333篇
  2013年   387篇
  2012年   464篇
  2011年   442篇
  2010年   289篇
  2009年   249篇
  2008年   303篇
  2007年   277篇
  2006年   260篇
  2005年   237篇
  2004年   188篇
  2003年   178篇
  2002年   168篇
  2001年   50篇
  2000年   39篇
  1999年   43篇
  1998年   41篇
  1997年   25篇
  1996年   30篇
  1995年   23篇
  1994年   22篇
  1993年   19篇
  1992年   12篇
  1991年   21篇
  1990年   8篇
  1989年   11篇
  1988年   9篇
  1987年   7篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   9篇
  1982年   5篇
  1981年   5篇
  1980年   2篇
  1978年   2篇
  1977年   5篇
  1976年   7篇
  1973年   2篇
  1972年   3篇
  1968年   2篇
排序方式: 共有5583条查询结果,搜索用时 640 毫秒
51.
52.
Microwave excitation spectrometry and metal binding inhibition studies show that zinc is a catlytically essential component of the highly purified RNA polymerase I from yeast, the first eukaryotic RNA polymerase I available in quantities sufficient for such studies. It contains 2.4 g-atom of zinc based on a molecular weight of 6.5 × 105 (8). Copper, iron, manganese and magnesium are absent, i.e., below the limits of detection, 10?13 to 10?14 g-atoms. A number of derivatives of 1,10-phenanthroline reversibly inhibit the polymerase catalyzed reaction, apparently by forming a ternary polymerase·Zn·OP complex while the nonchelating isomer, 1,7-phenanthroline, is ineffective.  相似文献   
53.
Desiccation, resulting from extremely dry environmental conditions, is a serious obstacle to the survival of organisms. Water is vital for the maintenance of intracellular structure and prevents the irreversible formation of aggregates, an occurrence leading to loss of cellular function. To characterize genetic variation in desiccation stress resistance (DSR) in Drosophila melanogaster Meigen, an intercontinental set of recombinant inbred lines (RIL) is used. Flies are exposed to a low humidity environment (<10% relative humidity) at a constant temperature of 25 °C. Desiccation stress resistance is higher in RIL derived from a backcross to the parental stock sensitive to heat stress (from Denmark) than in RIL derived from the reciprocal backcross to the heat‐stress resistant stock (from Australia). Composite interval mapping reveals significant quantitative trail loci (QTL) for DSR in the set of RIL. Both major and minor effects QTL are detected, suggesting a complex genetic architecture. When compared with a previous investigation performed on the same set of RIL, the present study indicates that not all traits of resistance to environmental stressors are affected in the same direction by segregating co‐localized QTL.  相似文献   
54.
Studies of external seed transport on animals usually assume that the probability of detachment is constant, so that seed retention should show a simple exponential relationship with time. This assumption has not been tested explicitly, and may lead to inaccurate representation of long distance seed dispersal by animals. We test the assumption by comparing the fit to empirical data of simple, two‐parameter functions. Fifty‐two data sets were obtained from five published studies, describing seed retention of 32 plant species on sheep, cattle, deer, goats and mice. Model selection suggested a simple exponential function was adequate for data sets in which seed retention was followed for short periods ( <48 h). The data gathered over longer periods (49–219 days) were best described by the power exponential function, a form of the stretched exponential which allows a changing dropping rate. In these cases the power exponential showed that seed dropping rate decreased with time, suggesting that seeds vary in attachment, with some seeds becoming deeply buried or wound up in the animal's coat. Comparison of fitted parameters across all the data sets also confirmed that seeds with adhesive structures have lower dropping rates than those without. We conclude that the seed dropping rate often changes with time during external transport on animals and that the power exponential is an effective function to describe this change. We advise that, to analyse seed dropping rates adequately, retention should be measured over reasonable time periods – until most seeds are dropped – and both the simple and power exponential functions should be fitted to the resulting data. To increase its utility, we provide functions describing the seed dropping rate and the dispersal kernel resulting from the power exponential relationship.  相似文献   
55.
Unlike most cells of the body which function in an ionic environment controlled within narrow limits, spermatozoa must function in a less controlled external environment. In order to better understand how sperm control their membrane potential in different ionic conditions, we measured mouse sperm membrane potentials under a variety of conditions and at different external K+ concentrations, both before and after capacitation. Experiments were undertaken using both wild-type, and mutant mouse sperm from the knock-out strain of the sperm-specific, pH-sensitive, SLO3 K+ channel. Membrane voltage data were fit to the Goldman-Hodgkin-Katz equation. Our study revealed a significant membrane permeability to both K+ and Cl before capacitation, as well as Na+. The permeability to both K+ and Cl has the effect of preventing large changes in membrane potential when the extracellular concentration of either ion is changed. Such a mechanism may protect against undesired shifts in membrane potential in changing ionic environments. We found that a significant portion of resting membrane potassium permeability in wild-type sperm was contributed by SLO3 K+ channels. We also found that further activation of SLO3 channels was the essential mechanism producing membrane hyperpolarization under two separate conditions, 1) elevation of external pH prior to capacitation and 2) capacitating conditions. Both conditions produced a significant membrane hyperpolarization in wild-type which was absent in SLO3 mutant sperm. Hyperpolarization in both conditions may result from activation of SLO3 channels by raising intracellular pH; however, demonstrating that SLO3-dependent hyperpolarization is achieved by an alkaline environment alone shows that SLO3 channel activation might occur independently of other events associated with capacitation. For example sperm may undergo stages of membrane hyperpolarization when reaching alkaline regions of the female genital tract. Significantly, other events associated with sperm capacitation, occur in SLO3 mutant sperm and thus proceed independently of hyperpolarization.  相似文献   
56.
Plant Ecology - The distribution pattern of perennial native grasses in the dune systems of the Monte desert might be determined by the ability of plant roots to acquire water under drought...  相似文献   
57.
58.
Musashi comprises an evolutionarily conserved family of RNA‐binding proteins (RBP) that regulate cell fate decisions during embryonic development and play key roles in the maintenance of self‐renewal and differentiation of stem cells and adult tissues. More recently, several studies have shown that any dysregulation of MSI1 and MSI2 can lead to cellular dysfunctions promoting tissue instability and tumorigenesis. Moreover, several reports have characterized many molecular interactions between members of the Musashi family with ligands and receptors of the signaling pathways responsible for controlling normal embryonic development: Notch, Transforming Growth Factor Beta (TGF‐β), Wingless (Wnt) and Hedgehog Signaling (Hh); all of which, when altered, are strongly associated with cancer onset and progression, especially in pediatric tumors. In this context, the present review aims to compile possible cross‐talks between Musashi proteins and members of the above cited molecular pathways for which dysregulation plays important roles during carcinogenesis and may be modulated by these RBP.  相似文献   
59.
60.
Ovule primordia formation is a complex developmental process with a strong impact on the production of seeds. In Arabidopsis this process is controlled by a gene network, including components of the signalling pathways of auxin, brassinosteroids (BRs) and cytokinins. Recently, we have shown that gibberellins (GAs) also play an important role in ovule primordia initiation, inhibiting ovule formation in both Arabidopsis and tomato. Here we reveal that BRs also participate in the control of ovule initiation in tomato, by promoting an increase on ovule primordia formation. Moreover, molecular and genetic analyses of the co‐regulation by GAs and BRs of the control of ovule initiation indicate that two different mechanisms occur in tomato and Arabidopsis. In tomato, GAs act downstream of BRs. BRs regulate ovule number through the downregulation of GA biosynthesis, which provokes stabilization of DELLA proteins that will finally promote ovule primordia initiation. In contrast, in Arabidopsis both GAs and BRs regulate ovule number independently of the activity levels of the other hormone. Taken together, our data strongly suggest that different molecular mechanisms could operate in different plant species to regulate identical developmental processes even, as for ovule primordia initiation, if the same set of hormones trigger similar responses, adding a new level of complexity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号